Unique Paper Code:	32371501
Name of the Course:	B.SC (Hons.) STATISTICS: CBCS
Name of the Paper:	Stochastic Processes and Queuing Theory
Semester:	V
Duration:	<u>3 hours</u>
Maximum Marks:	<u>75</u>

Instructions for Candidates:

- 1.
- Attempt *four* questions in all. All questions carry equal marks. Use of calculator is allowed. 2.
- 3.

1. Let $\{X_n, n \ge 0\}$ be a Markov Chain having state space $S = \{0, 1, 2, 3, 4, 5, 6\}$ and transition matrix

0	0	$\frac{3}{4}$	$\frac{1}{4}$	0	0	0
0	$\frac{1}{2}$	0	0	$\frac{1}{2}$	0	0
$\frac{1}{2}$	0	$\frac{1}{4}$	$\frac{1}{4}$	0	0	0
$\frac{1}{5}$	0	$\frac{2}{5}$	$\frac{2}{5}$	0	0	0
0	0	0	0	0	1	0
0	0	0	0	$\frac{1}{2}$	0	$\frac{1}{2}$
0	0	0	0	0	1	0

Find the nature of each state. Also, identify the closed $set(s)_{\pm}$ if any and obtain its stationary distribution (if <u>it</u> exists).

2. Let X be a zero- one truncated Poisson variate with parameter (λ) with zero-one classes missing and having the p.m.f,

$$P(X = k) = \frac{e^{-\lambda} \lambda^{k}}{k! (1 - e^{-\lambda} - \lambda e^{-\lambda})}, k = 2, 3, \dots$$

Obtain the probability generating function of r.v X and hence obtain mean and variance of X. Further, if X_1 and X_2 are i.i.d zero- one truncated Poisson variates with parameter (λ), find the probability generating function of $X_1 + X_2$.

3. Derive the differential difference equations for the linear growth process with immigration/emigration having

$$\lambda_n = n\lambda + 4; \ \mu_n = n\mu - 3$$

Hence obtain the second moment differential equation of mean population size when population starts with 3 individuals at t=0.

4. Under queuing model when arrival and departure follow Poisson process with single server, 5 as space limit for customers and FIFO queue discipline, derive the steady-state probabilities and obtain the mean size of the system . Further, modify above equations results when system has no space limit.

5. Construct the transition probability matrix when game starts with \$8 and gambler with initial capital \$3 starts the game and his probabilities of winning, losing and drawing a game are (0.46, 0.44,.10) respectively with stopping criteria is either gambler ruins or wins all amount. Further, find expected duration of the game when gambler either wins or loses a game with equal probability and no possibility of draw.

6. Assume that total number of COVID-19 cases follow Poisson process with parameter 6 per day. The COVID-19 patient recovery probability is 0.88 and probability of death is 0.12. Find the mean and variance of recovered cases at the end of 10 th day. Find, the probability that the number of recovered cases exceed number of deaths by 4 at the end of 2^{nd} day.